
iLab C++ Neuromorphic Toolkit

iLab C++ Neuromorphic Vision Toolkit Overview

• Components:
• Basic image processing and vision

• Attention-related neural components

• Object recognition-related neural components

• Scene gist/layout-related neural components

• Basic knowledge base / ontology

• Hardware interfacing

• Beowulf message passing

• Applications

• Implementation:
• C++, somewhat Linux-specific

• Additional perl/matlab/shell scripts for batch processing

• Uniprocessor as well as Beowulf

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

The basic architecture

• The diagram on the next slide is an overview of this computational
neuroscience model.

• Suggested readings: see http://iLab.usc.edu/publications/

• Start with Itti & Koch, Nature Reviews Neuroscience, 2001, for an overview.

• Then see Itti, Koch and Niebur, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1998, for the core algorithm.

• Then see Itti & Koch, Vision Research, 2000 and Itti & Koch, Journal of Electronic
Imaging, 2001, for more advanced competition for salience.

• See papers by Christian Siagian, Christopher Ackerman & Nitin Dhavale for more on
robotics applications, gist, and localization.

• See papers by Vidhya Navalpakkam, Rob Peters and Lior Elazary for more on scene
understanding & top-down biasing.

• See papers by Nathan Mundhenk for more on contour integration, surprise

• Etc…

Tuesday, July 20, 2010

http://iLab.usc.edu/publications/
http://iLab.usc.edu/publications/
http://iLab.usc.edu/publications/
http://iLab.usc.edu/publications/

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Root: Image class

• Template class
• e.g., Image<byte>, Image<PixRGB<float>>, Image<Neuron>

• Implemented using copy-on-write/ref-counting
• Makes copying a light operation

• Many associated methods
• Shape ops
• Color ops
• Mono only
• Math ops
• Matrix ops
• I/O
• Filter ops
• Transforms

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

C++ Templates

• The old way: ByteImage, FloatImage, ColorImage, etc. yields lots of duplicated
code that achieves essentially the same operations.

• The C++ way: write your algorithm only once, and make it operate on an
unknown data type T. The compiler will then generate machine code
corresponding to your algorithm and various data types for T, such as, T=byte,
T=float, T=MyClass, etc

template <class T> class Image {
public:
	 Image();
	 T getPixelValue(const int x, const int y) const;
	 void setPixelValue(const T& value, const int x, const int y);
private:
	 T* data;
};

int main(const int argc, const char **argv) {
	 Image<float> myImage; myImage.setPixelValue(1.23F, 10, 10);
	 return 0;
}

See src/Image/Image.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Operator overloads

• C++ allows you to define operators such as +, -, *, etc for your various
classes.

• Example:

Image<byte> img1, img2;

img1 += 3; // calls Image<T>::operator+=(const T& value)

img1 = img1*2 + img2/3;	 // calls operator*(const T& value),
	 	 	 	 	 // operator/(const T& value),
	 	 	 	 	 // and operator+(const Image<T>& im)

See Image/Pixels.H, Image.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Automatic type promotions

• Using type traits to determine at compile time whether the result of
an arithmetic operation will fit in the same type as the operands.

• Extends the canonical C++ promotions to non-canonical types.

• Examples:

Image<byte> im;

im + im 	 is an Image<int>
im * 2.0F 	 is an Image<float>
im * 2.0	 is an Image<double>

See Util/Promotions.H,
Image/Pixels.H, Image/Image.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Automatic type demotion with clamping

• Assignment from a strong type into a weak type will ensure that no
overflow occurs.

• Example:

Image<byte> im1, im2; Image<float> im3;

im1 = im3;	 // will clamp values of im3 to 0..255 range and convert

im2 = im1 * 2.0; // will create an Image<double> containing the
	 	 	 // result of im1 * 2.0, then clamp this image to
	 	 	 // 0..255 pixel range, then assign to im2.

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Automatic type demotion with clamping

• Promotion rules (in Util/Promotions.H):
	 Basically follow the C/C++ canonical promotions

• byte, byte -> int; Byte, int16 -> int; int16, int16 -> int; etc…

• int, int -> int

• byte, float -> float; int, float -> float; float, float -> float, etc…

• byte, double -> double; int, double -> double; float, double -> double, etc…

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

• The standard way:

Image object contains an array of pixels:

Problem: copy is expensive, need to copy the whole data array (can be
large, e.g., a 16MP RGB image uses 48MB of memory).

int width, height;

T* data;

Image<T> object

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

In particular, this makes it very expensive to return Image objects from
functions, hence essentially forbidding the natural syntax:

Image<float> source;
Image<float> result = filter(source); With a function:

Image<float> filter(const Image<float>& source) {
	 Image<float> res;
	 // fill-up pixel values of res, processing values from source
	 return res;
}

Indeed what happens here is:
1) Inside filter(), allocate a new image res to hold the result
2) In the ‘return’ statement, copy that local image to some temporary
3) In the ‘=‘ statement, copy that temporary to Image ‘result’

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Copy-on-write / ref counting

• The smart way: only keep a pointer to the actual pixel data in each
Image object. When making copies of the Image object, keep track of
how many are pointing to the same pixel data. When the last Image
object is destroyed, free the pixel data. If the user attempts to modify
the contents of one of the images that point to the same data, first
make a copy of the data.

Image<byte> img1, img2, img3; img2 = img1; img3 = img1;

int width, height;

byte* dataptr;

img1

int width, height;

byte* dataptr;

img3

int width, height;

byte* dataptr;

img2

Pixel data

See Image/ArrayData.H, Image.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Free functions rather than methods

• Given the copy-on-write mechanism, it is now very cheap to return Image objects.
Thus, the more natural ‘free function’ syntax may be used for most image
processing functions, instead of the ‘class method’ syntax.

• Example: let’s say I want to pass an image through 3 successive filters, filter1(),
filter2() and filter3():

Class method syntax: the filterX() are methods of class Image
	 const Image<float> source;
	 Image<float> result1, result2;
	 result1.filter1(source);
	 result2.filter2(result1);
	 result1.filter3(result2);
	 result2.freeMem();

Free function syntax: the filterX() are functions not attached to a class
	 const Image<float> source;
	 Image<float> result = filter3(filter2(filter1(source)));

See Image/*.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Iterators

• Accessing data via pointers is error-prone, use iterators instead. Our
classes that hold some data that can be iterated on provide iterator
support very similar to that of the STL classes.

• Example:

Image<byte> img;

Image<byte>::iterator itr = img.beginw(), stop = img.endw();
while (itr != stop) { *itr++ = 0; }

See Image/Image.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Shared pointers

• When objects communicate with lots of other objects, it is often
difficult to know who will run out of scope first. When new memory is
allocated for an object that will be passed around and used by several
objects, we would like an automatic way of freeing the memory when
everybody is done with it.

• Hence the class shared_ptr<T> which behaves like a pointer, except
that when the last shared_ptr to an object runs out of scope, it will
destroy/free the memory for that object.

• Example:
In obj1: SharedPtr<Message> mymsg(new Message());
In obj2: SharedPtr<Message> mymsg2(mymsg);
	 	 mymsg2->function();

Message will be destroyed only when its SharedPtr’s have run out of
scope in both obj1 and obj2.

See rutz/shared_ptr.h,
Also nub/ref.h

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Elementary core classes

• Dims: for 2D (width, height) dimensions	 	 Dims.H
• Point2D<T>: An (i, j) 2D point	 	 	 Point2D.H
• PixRGB<T>: a (red, green, blue) triplet	 	 Pixels.H
• Timer: to count time with arbitrary accuracy	 	 Timer.H
• CpuTimer: to measure time and CPU load	 	 CpuTimer.H
• Range: specifies a numeric range of values	 	 Range.H
• LevelSpec: specifies scales for feature/saliency map	 LevelSpec.H
• Rectangle: a rectangle	 	 	 	 Rectangle.H
• Angle: an angle	 	 	 	 	 Angle.H
• shared_ptr<T>: a shared pointer	 	 	 shared_ptr.h
• VisualEvent
• VisualObject
• VisualFeature
• …

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Core definitions

• Promotions.H: the automatic type promotion rules
• atomic.H: atomic (one-CPU-instruction) operations
• Mathfunctions.H: basic math functions
• JobServer.H / WorkThreadServer.H: multithreading support
• Log.H: comprehensive logging facility
• StringConversions.H: convert various datatypes to/from string
• StringUtil.H: various string manipulation utilities (e.g., tokenize)
• sformat.H: like sprintf for std::string
• TypeTraits.H: compile-time information about types
• …

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Logs

• Provide a unified, convenient mechanism for text message output.
• 4 levels: LDEBUG, LINFO, LERROR, LFATAL
• printf()-like syntax
• Automatically adds class/function name, system error messages (use prefix ‘P’), a

user id (use prefix ‘ID’), a line number (compile-time option)
• Can print to stderr or syslog

The hard way:
fprintf(stderr, “In myFunction(), could not open file ‘%s’ (error: %s)\n”, filename,

strerror(errno));
>>>> In myFunction(), could not open file `test’ (error: file not found)

The easy way:
PLERROR(“Could not open file ‘%s’ ”, filename);
>>>> MyClass::myFunction: Could not open file ‘test’ (file not found)

See Util/log.H

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Helper classes

• Raster: to read/write/display Images in various formats

• V4Lgrabber: to grab images from video source (PCI/USB)

• XWindow: to display image collections & interact

• FrameIstream, FrameOstream, FrameSeries: easily read images from
image files, movies, cameras, etc

• Etc…

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

src/ directories

AppDevices/ Channels/ GUI/ nub/ SceneUnderstanding/
AppEye/ CINNIC/ HMAX/ ObjRec/ Script/

AppGUI/ CMapDemo/ Ice/ Parallel/ SeaBee/

AppMedia/ CmuCam/ Image/ pbot/ SIFT/

AppNeuro/ Component/ inst@ plugins/ Simulation/

AppPsycho/ Controllers/ INVT/ PointCloud/ Surprise/

Apps/ Corba/ Landmark/ Psycho/ tcl/
ArmControl/ Demo/ Learn/ Qt/ TestSuite/

Audio/ Devices/ Matlab/ QtUtil/ TIGS/

Beobot/ Envision/ MBARI/ Raster/ Transport/

BeoSub/ extra/ Media/ RCBot/ Util/

Beowulf/ Foveator/ ModelNeuron/ Robots/ VFAT/

BO/ GA/ NeovisionII/ rutz/ Vgames/
BPnnet/ GameBoard/ Nerdcam/ SalGlasses/ Video/

Cell/ Gist/ Neuro/ Sbqa/

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

ImageSets, a.k.a. Image Pyramids

• Collection of images

• Dyadic image reduction from one
level to next

• Various filters applied before
reduction

See Image/ImageSet.H, ImageSetOps.H,
PyramidOps.H, PyrBuilder.H, etc

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Channels

• Implement a pyramid or collection of pyramids plus some I/O
functions and additional processing

• Various derived instances can be identified by name

• SingleChannel: contains one pyramid
• ComplexChannel: contains a collection of SingleChannels

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Itti & Koch,
Vision Research 2000

SingleChannel

ComplexChannel

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Single Channels

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Complex channels

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

VisualCortex

• Run-time configurable collection of channels, plus additional I/O and access
methods

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Brain

VisualCortex plugged-in
 at run-time

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Brain: basic operation

Data flow is controlled by a blackboard architecture: Brain modules can post
messages and can register callbacks which will be called when some messages
are posted by other modules.

Processing flow is driven by reading new input images (stream oriented):

• Get an input image
• Process it through VisualCortex, get saliency map input
• Feed saliency map
• Let saliency map evolve
• Let task-relevance map evolve
• Combine saliency map and task-relevance map outputs to feed attention-guidance

map
• Let attention-guidance map evolve
• Feed output of attention-guidance map to winner-take-all
• Get winner-take all output, if any
• Feed that to saccade controller
• Also feed it to shape estimator
• Activate inhibition of return
• …

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

SaccadeController

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

iLab C++ Neuromorphic Toolkit

Tuesday, July 20, 2010

