Dynamic scene analysis:
Recognition action and events

Representing temporal and spatial
structure



* Relation to yesterday’s lectures:

— Jim Rehg: Further analysis of the problem of
action/event detection in videos

— Jinxiang Chai: Models for classification/detection
in input videos vs. synthesis and human motion
model acquisition



First, a little bit of philosophy
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First, a little bit of philosophy
Let’s look at an image labeling problem first

building

@ . fereground

[Gould ICCV’09, Munoz ECCV’10]

Distributions of local features

Region features
Conditional Random Field or hierarchical set of classifiers

Direct interpretation from classification of image features
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[Hoiem, Efros, Hebert, CVPROS, 1JCV10]
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[Gupta, Efros, Hebert, ECCV’10]

Reasoning about inferred 3D geometry (surfaces,
occlusions between objects, physical constraints)
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First, a little bit of philosophy
Let’s look at event/action detection for video

. Machine
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Training data +

Input sequence Set of feature of vectors Geometry, relational
+ additional structure information, physics,
(e.g., geometry, domain knowledge
relations)

What representations? What kind of reasoning?
Not much done so far.....



Examples
SitDown SitUp StandUp

Walking Jogging Running Boxing Waving Clapping

KTH

Rochester

UCF YouTube




Classification vs. detection

* Classification:
— Is there a “drinking” event in the input video?

* Detection:

— Where is (in space and time) the drinking event in
the input video?

 What we will see: Profound implications on
bias in training data



Theme today:
— What are the key trade-offs between the representations?

— How to balance generalization power, complexity, and
spatial and temporal representational power?



Outline

Quick overview of two standards approaches
— Statistical BoF approaches
— Volumetric approaches
Incorporating temporal information more explicitly
— Example: Trajectory fragments
Incorporating spatial information more explicitly
— Example: Encoding pairwise relations
Designing stronger structural models
— Example: “Micro-actions” recognition through implicit 3D reconstruction
Issues with video training datasets
— Example: Selecting temporal boundaries
— Analysis of bias in standard datasets

Discussion and introduction to proposed challenge problems for afternoon
presentations



One extreme:

1 * Orderless representations
I I « Efficient, direct extension of BoW approaches for images
>

* Loses spatial and temporal structure

Bags of features
Histograms



Structure:

Complicated,
Variable cost

Dense features:
Simple,
Expensive

Sparse features:
Simple,
Cheap
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Position (x,V,t)

Quantize to S values

Label (color)
L discrete values



SIFT

or

MOSIFT

or

STIP

etc.



Example: Laptev

Bag of space-time features +
multi-channel SVM

HOG & HOF
patch
descriptors

Slide adapted from Laptev, CVPRO8

|. Laptev. On space-time interest points. IJCV, 64 (2/3):107-123,
2005.

P. Doll"ar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In VS-PETS, 2005.
C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A
local SVM approach. In ICPR, 2004.

J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of
human action categories using spatial-temporal words. In BMVC,
2006.

Collection of space-time patches
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Examples

AnswerPhone etOutCar HandShake HugPerson

Automatic | Chance

AnswerPhone || 32.1% 16.4% 10.6%

GetOutCar 41.5% 16.4% 6.0%

HandShake 32.3% 0.9% 8.8%

HugPerson 40.6% 26.8% 10.1%

Kiss 53.3% 45.1% 23.5%

Laptev, CVPROS8 SitDown 38.6% 24.8% 13.8%
SitUp 18.2% 10.4% 4.6%

StandUp 50.5% 33.6% 22.6%




|. Laptev. On space-time interest points. [JCV, 64
(2/3):107-123, 2005.
P. Doll"ar, V. Rabaud, G. Cottrell, and S. Belongie.

Behavior recognition via sparse spatio-temporal
features. In VS-PETS, 2005.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing
human actions: A local SVM approach. In ICPR, 2004.

J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised
learning of human action categories using spatial-
temporal words. In BMVC, 2006.



Lessons?

e Plus:

— Can generalize well, e.g., can learn from large sets of
examples

— Fast, can reuse most data across classes
— Well suited for classification tasks

* Minus:

— Does not incorporate strong representation of spatial and
temporal structure

— Cannot operate with very few examples
— Not well suited for detection tasks



At other extreme: Volumetric
representations

« Template-based representation
* Preserves strong spatial/temporal structure
» Difficult to generalize to variations in viewpoint




Another extreme:

» Template-based representation

* Preserves strong spatial/temporal structure

« Difficult to generalize to variations in viewpoint

A few examples:

Bobick, A. F., & Davis, J. W. (2001). The recognition of human
movement using temporal templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(3).

Blank, M., Gorelick, L., Shechtman, E., Irani, M., & Basri, R. (2005).
Actions as space-time shapes. In Proc. ICCV.

Ke, Y., Sukthankar, R., Hebert, M. (2010). Volumetric Features for
Video Event Detection. International Journal of Computer Vision.

Shechtman, E., & Irani, M. (2007). Space-time behavior based
correlation; How to tell if two underlying motion fields are similar without
computing them? IEEE Transactions on Pattern Analysis and Machine

Space-time volume
Intelligence, 29(11). Flow/shape comparison

Weinland, D., Ronfard, R., & Boyer, E. (2006). Free viewpoint action
recognition using motion history volumes. Computer Vision and Image
Understanding, 104(2).

Yilmaz, A., & Shah, M. (2005). Actions as objects: A novel action
representation. In Proc. CVPR.



Using space-time volumes: General idea

Grab-Cup Event



Using space-time volumes: General idea

Grab-Cup Event



Example

- video
segment S

4

video V'

.ﬂ--- 9§ O¢

Compare distribution of motion vectors between 2 blocks (reference
action model vs. observed video)

* Trick: Estimate consistency between distributions of motion without
estimating motion explicitly

Shechtman, E., & Irani, M. (2007). Space-time behavior based correlation; How to tell if two

underlying motion fields are similar without computing them? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(11).
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*Space-Time Harris Matrix

*Upper-left Minor

[slide adapted from Pyry Matikainen]




Y»P: YP,P, XP.P
M=G'G= | ©P,P. XP? XP,P,

. YPP, YPRP, XIP?

Space-Time Harris Matrix

MO — YP? XP.P,
~ | =P,P.  ¥P?

Upper-left Minor

If the motion is consistent within the space-time block:
The temporal axis does not affect the rank of M

rank(M) ~rank(M?®)

[slide adapted from Pyry Matikainen]



[slide adapted from Pyry Matikainen]
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[slide adapted from Pyry Matikainen]



0 single motion

Ar = rank(M)—rank(M?) = { 1 multiple motions

N\

We use a continuous extension of this measure

Ao - A3 det(M) det(M)

AM”: — ~
CTACAY T de(MO) A deu(MO) - Ml

AI"]Q

Mio» = Inconsistency

Hlil’l(Ai"] ,,A}”Q) + &

Clp = 1/}?’112 Consistency

[slide adapted from Pyry Matikainen]



Example

- video
segment S

4

video V'

.ﬂ--- 9§ O¢

Compare distribution of motion vectors between 2 blocks (reference
action model vs. observed video)

* Trick: Estimate consistency between distributions of motion without
estimating motion explicitly

Shechtman, E., & Irani, M. (2007). Space-time behavior based correlation; How to tell if two

underlying motion fields are similar without computing them? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(11).



Potentially expensive?
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[slide adapted from Pyry Matikainen
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*Typical situation:
180x144x200 video (65)
60x30x30 template (1s)

279,936,000,000
consistency comparisons



* The matrices involved are semi definite positive
* Bounded domain with proper normalization

* |dea: Use quantized representation instead of
continuous representation ~

[slide adapted from Pyry Matikainen]
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[slide adapted from Pyry Matikainen]



Hierarchical table

[slide adapted from Pyry Matikainen]



Level O
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Global Label

[slide adapted from Pyry Matikainen]
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*One level

Actual
consistency table:

1 | 1600x1600 =
. L(100 centers)
| X

(16 levels)

11 |9 R
1 1w 191

[slide adapted from Pyry Matikainen]



No quantization

With quantization

[Matikainen, Hebert,
Sukthankar Ke, Fast Motion
Consistency Through Matrix
Quantization, 2009]



Does quantization affect performance?
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Evaluated over all actions in KTH

[slide adapted from Pyry Matikainen]



Speed Gains from Quantization
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Computation Time For a 4s Video (s)
N
o

No Quantization Quantization (1) Quantization (2)

[Matikainen, Hebert, Sukthankar Ke, Fast Motion Consistency Through Matrix Quantization, 2009]



Lessons learned

Added temporal dimension increases complexity

Clever quantization scheme can be crucial for
efficient computation

Better quantization is often more relevant than
blind clustering

More later on using quantization schemes for
efficient representations of spatial and temporal
relations



Example

 Compare volume with over-segmentation of video
— Alignment of regions +
— Consistency of motion distributions

Ke et al. IJCV 2010



Example: Naive volumetric approach
V=V,uV,u..uV,
Template )
TNV if TNV <|Vil/2

d(T,V):Zd(T,Vi)




Matching Distance

Naive volumetric approach

1.1

| |
Pickup ——

/00



A little better: Normalization for variation
in granularity of space-time segmentation

*Normal Over-segmentation *Extreme Over-segmentation



A little better: Normalization for variation
in granularity of space-time segmentation

i - d(T,V)
e Erld(, V)]
*E [distance] is large *E [distance] is small

*Normal Over-segmentation *Extreme Over-segmentation

54



Much better: Incorporate motion
consistency

ATV
shape Eﬁ/]d[al(7 V)]
dflow(’v :: ZdST(Pj)

d.-(P) = motion inconsistence within small block P
between template and input space-time volume

d (T 1V) — adshape(T ’V) T (1_ Ol)d flow (T ’V)



Issues with generalization and one
possible fix (but not very satisfactory)

T
L™ = argmin Z a;(l;)  + Z du (li,15)
L =1 (v;,v;
Shape + Flow Correlation  Gaussian Distribution

\

* Not robust to variations (different actors, viewpoint, speed...)

* Attempted fix: Parts-based representation + representation of
deformations





C:/Documents and Settings/hebert/Desktop/09IC/pick.wmv
C:/Documents and Settings/hebert/Desktop/09IC/flipcoin8.wmv
C:/Documents and Settings/hebert/Desktop/09IC/cooljump.wmv
C:/Documents and Settings/hebert/Desktop/09IC/drink_combined.wmv
C:/Documents and Settings/hebert/Desktop/09IC/hug.wmv
C:/Documents and Settings/hebert/Desktop/09IC/handshake.wmv

About extracting space-time volumes:
One example

register &
propagate

(I)t—l

frame t

Juan Carlos Nieble, Bohyung Han, Li Fei-Fei . Efficient Extraction of Human
Motion Volumes by Tracking. CVPR 2010.



About extracting space-time volumes:
One example

Juan Carlos Nieble, Bohyung Han, Li Fei-Fei . Efficient Extraction of Human
Motion Volumes by Tracking. CVPR 2010.



Lessons?

e Plus:
— Can operate with very few examples

— Incorporate explicit representation of spatial and temporal
structure

— Does not require explicit tracking, motion estimation, or
feature points

— Well suited for detection tasks
* Minus:

— Cannot generalize well, i.e., build models from many
examples

— Expensive? Cannot reuse data across models
— Not well suited for classification tasks



What to do?

Plus:

Can generalize well, e.g., can learn from
large sets of examples

Fast, can reuse most data across classes
Well suited for classification tasks

Minus:

Does not incorporate strong representation
of spatial and temporal structure

Cannot operate with very few examples
Not well suited for detection tasks

Plus:

Can operate with very few examples (1!)

Incorporate explicit representation of spatial
and temporal structure

Does not require explicit tracking, motion
estimation, or feature points

Well suited for detection tasks

Minus:

Cannot generalize well, i.e., build models
from many examples

Expensive? Cannot reuse data across models
Not well suited for classification tasks



2D spatial relations
Temporal consistency

1 3D spatial relations T
ul | raa

Bags of features Trajectory fragments Space-time volume
Histograms Flow/shape comparison




Issues and examples

How to represent distribution of local motion
patterns?

How to represent both temporal and spatial
consistency?

How to train classifiers?
Examples:

— Using trajectory fragments
— Using implicit human motion model



Silhouettes are nicely attached to the action,
but difficult to compute

HOF is easier to compute, but
indiscriminately lumps foreground and
background together

Could we find a feature that is both easy to compute and attached?
Pyry Matikainen



Quantized trajectory fragments

Avoids difficulty of tracking known
landmarks by blindly tracking with KLT

Trajectories are intrinsically attached

Treats trajectories statistically rather than
structurally

Pyry Matikainen



Overview

Trajectory fragment extraction

et Fragment :> Label
o T Labels Histogram

i At RE Rt Accumulate

W it S T ae S Nearest neighbor
e thovmaeT thovm i SVM

WS s W s
VGRS T SRV S

Classification

Fragment

dictionary
(codebook)

Pyry Matikainen



Overview

_/

Feature tracking

T
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Bags of trajectories

0

JSORAN[S

Quantized trajectory
clusters

Pyry Matikainen



Pyry Matikainen



dx [0, 0, 0, 3, 5, 6, 4, -1, -4]
dy [OI OI O; _41 _31 _11 21 51 3]

[OI OI OI OI OI OI 31 _41 51 _31 61 _11 41 2/ _11 5/ _41 3]
[V, V., vV, vV, V, ]

Trajectory fragment: derivatives packed into a vector

Pyry Matikainen



Each trajectory produces many fragments

#fragments ~ #features x #frames
Pyry Matikainen



g

Problem: trajectory fragments have no local context

Solution: augment with transforms of their motion clusters
Pyry Matikainen



Example Motion Clustering

Pyry Matikainen



Example Motion Clustering

Pyry Matikainen



Error of a fragment given a set of transforms

Pyry Matikainen



Least Squares Minimization

Greedy Assignment

Motion cluster estimation

Pyry Matikainen



[Vo Vg V., ..V, .. V,; V] Trajectory fragment

\_'_I
[ dx dy]
V. V vV V Vv v Affine-Augmented
Vs ’ N . 0 Trajectory fragment
\_'_I

[dx dy a;; a,; a;, a;,]

\ )
I

ai,l a1,2 1:x
Ai=T )= a,, a,, ty Motion cluster transforms
0O 0 1

AA (affine augmented) fragment

Trajectory fragment and affine transform packed into vector
Pyry Matikainen



Training set fragments

Library
T Et s S s
SR B SRR

PR =t S It ]
Pyry Matikainen
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Hollywood Actions Dataset [Laptev et al. 2008]
*1000 AA guantized fragments, 100 features, 6 motion clusters
eLinear SVM classification on histograms
*Histograms accumulated over entire clips



Quantized Quantized fragments
fragments (lax SVM)

Total

SitDown
StandUp

Kiss
AnswerPhone
HugPerson
HandShake
SitUp
GetOutCar

31.1
4.5
69.0
71.4
0.0
0.0
5.3
111
7.7

27.2
13.6
42.9
42.9
35.5
23.5
5.3

111
7.7

27.1
20.7
40.0
36.5
24.6
17.4
12.1
5.7

14.9



Another example

Feature = sequence O
of velocities over fixed
length (e.g., 500)

0O ¢ = velocity at frame
j of feature f

[Messing, Pal, and Kautz, ICCV 2009]



Probabilistic model

e Each feature generated by a set of mixture
components

* M =set of N, feature component

* M, ;= featuref is generated by mixture
component |

PO, 14)= > P(M,, | AP, M, )

Mixture weights Model for mixture
for action A component |

[Messing, Pal, and Kautz, ICCV 2009]



Example mixture components




Probabilistic model

 Markov model for the velocity features:

t=T
P(Of |Mi,f): P(OO,f |Mi,f)HP(Ot,f |Ot—1,f’Mi,f)
t=1

7

Initial velocity model Prediction model from
timet-ltotimet

PO, 14)= > P(M,, | AP, M, )

!

i=N, t=T
P(Of |A): ZP(Mi,f |A)P(Of | Mi,f)P(OO,f | Mi,f)HP(Ot,f |Ot—1,f’Mi,f)
i=1 t=1

[Messing, Pal, and Kautz, ICCV 2009]



Probabilistic model

* Assuming Naive Bayes independence of the

trajectories
f =N f

P(O]A) = HP(Of | A)

PO; [A)= Y P(M, | APO, M, )P, , IM; ) [P, 104,.M, )

N ¢ =N,

POIA)=]] ZP(lelA)P(O IM.f)P(OofIM.f)HP(OtfIOtlf 1)

f=1 i=1

[Messing, Pal, and Kautz, ICCV 2009]



Probabilistic model

* Training:

— Learn mixture weights and mixture models from
labeled data

* Testing:
— Find A such that argmax P(O | A)
A

— Note: Classification only
I=N,
P(Of ‘ A) — ZP(Mi,f ‘ A)P(Of ‘ Mi,f)
i=1

Mixture weights Model for mixture
for action A component |

[Messing, Pal, and Kautz, ICCV 2009]



Can we add more structure?

* Using explicit trajectory fragments allowed to
make explicit some temporal information

* Can we now add some spatial consistency
information?

» P. Matikainen, M. Hebert, and R. Sukthankar. Representing Pairwise
Spatial and Temporal Relations for Action Recognition. In ECCV, 2010.

* R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity
histories of tracked keypoints. In ICCV, 2009.

* A. Gilbert, J. lllingworth and R. Bowden. Fast Realistic Multi-Action
Recognition using Mined Dense Spatio-temporal Features. In ICCV 20009.
« S. Maji and J. Malik. Object detection using a max-margin Hough
transform. In CVPR, 2009.

Detailed explanation in next set of slides: Courtesy Pyry Matikainen



Pyry Matikainen



N
|

Naive method: quantize pairs
guantize relationships

2

Produce new labels which are (|, |, s) triples

i

Original labels

Quantized spatial relationships |  Pyry Matikainen



N
|

Naive method: quantize pairs
guantize relationships

2

O(L2S) pair labels

# of possible quantized spatial relationships

# of possible feature labels o
Pyry Matikainen



O(L2S) pair labels

1000 labels, 10 relationships

N\

10,000,000 pair labels

Pyry Matikainen



Some approaches to dealing with
O(L?S) pair labels

Restrict the number of relationships

Proximity only, ahead / behind, etc.
(Ryoo and Aggarwal 2009, Savarese et al . 2008)

Restrict the number of labels

Aggressive quantization, only one label
(Gilbert et al. 2008)



dx

..dy

P(dx, dy, I,,1, | A) =
P(dx,dy|L,1,, A)P(, | AP, | A)

From Matikainen, Hebert, Sukthankar, ECCV 2010




dx

..dy

P(dx,dy,l,l, |a)=
P(dx,dy|a,l,1,)P(, [a)P(,|a)

P(Fla) =[] P(la) || P, a)P(de, dyla.l;.15).
fielr f;eF
From Matikainen, Hebert, Sukthankar, ECCV 2010



P(Fla) = ] P(la) 1] Pl a)P(de. dyla,l;. 1),

fiel 1 EF\ ’

\ N
1l N
log(P(Fla)) =

ST S log(P(de, dyla, i, ;) + C

fi"EJF ijP~\

J

|
These are the edge weights

From Matikainen, Hebert, Sukthankar, ECCV 2010



l{)g(P(d;Lf? dy‘a'? zl ZJ)) — ITH--.Ei_-Ej [J[(di'* dy)]

\ J

From Matikainen, Hebert, Sukthankar, ECCV 2010



[Matikainen, Hebert, Sukthankar. Representing Pairwise Spatial and Temporal
Relations for Action Recognition, ECCV 2010]

NNNNN

0123456 7

(22,17,eatBanana) | 31219 |3]|0|3]|0]|5

> (23,17,eatBanana) (5 | 8 |8 4|8 |4 |3|3
(24,17,eatBanana) | 3191814 |0|3]|6]|8
(25,177,eatBanana) [ 8 |0 |6 3|97 |03

One row for every (label, label, action) triple



answerPhone chopBanana dialPhone drinkWater eatBanana

s -l B s

eatSnack lookupInPhonebook peelBanana useSilverware writeOnWhiteboard
Classify on:

B, =;Zlog(P(dx,dy\a,l,lj)

S. Maji and J. Malik. Object detection using a max-margin

Hough transform. In CVPR, 20009.
Pyry Matikainen



SIFT

or

MOSIFT

or

etc.




Evaluation Features

STIP — Appearance, k-means quantization
Trajectons — Motion, fixed quantization

Evaluation Datasets

UCF-YT — YouTube videos, low-res, complex
Rochester— Kitchen videos, high-res, simple



(150 videos, 10 classes)

(1600 videos, 11 classes)

Voo

Method UCF-YT Rochester
STIP-HoG (single) (Laptev et al. [1]) 55.0% 56.7%
STIP-HoG (NB-pairwise alone) 16.4% 20.7%
STIP-HoG (D-pairwise alone) 46.6% 46.0%
STIP-HoG (single + D-pairwise) 59.0% 64.0%
STIP-HoG-Norm (single) (Laptev et al. [1])  42.6% 40.6%
SCM-Traj (single) 42.3% 37.3%
SCM-Traj (NB-pairwise alone) 14.3% 70.0%
SCM-Traj (D-pairwise alone) 40.0% 48.0%
SCM-Traj (single + D-pairwise) 47.1% 50.0%

NB = Naive Bayes
D = discriminative approach

From Matikainen, Hebert, Sukthankar, ECCV 2010



(150 videos, 10 classes)

(1600 videos, 11 classes)

2

Method UCF-Y'T' Rochester
STIP-HoG (single) (Laptev et al. [1]) 55.0% 56.7%
STIP-HoG (NB-pairwise alone) 16.4% 20.7%
STIP-HoG (D-pairwise alone) 46.6% 46.0%
STIP-HoG (single + D-pairwise) 59.0% 64.0%
STIP-HoG-Norm (single) (Laptev et al. [1])  42.6% 40.6%
SCM-Traj (single) 42.3% 37.3%
SCM-Traj (NB-pairwise alone) 14.3% 70.0%

(
SCM-Traj (D-pairwise alone) 40.0% 48.0%
SCM-Traj (single + D-pairwise) 47.1% 50.0%




(150 videos, 10 classes)

(1600 videos, 11 classes)

2

Method UCF-Y'T' Rochester
STIP-HoG (single) (Laptev et al. [1]) 55.0% 56.7%
STIP-HoG (NB-pairwise alone) 16.4% 20.7%
STIP-HoG (D-pairwise alone) 46.6% 46.0%
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Yellow = high
P(pair | answerPhone)

From Matikainen, Hebert, Sukthankar, ECCV 2010



Relative vs. absolute information

Cluster of feature locations
from training data

* Using (X,y) instead of (dX,dy) emphasizes
correlations to fixed environment/camera



* We can now make more explicit both
temporal and spatial relations

 But can we make structure even more explicit
without compromising generalization (i.e.,
without going back to strong templates)?



Using trajectory elements

e Critique: Better representation of temporal and
spatial structure, but:
— Still along the lines of statistical representations
— Still weak, implicit representation of structure
— Does not exploit skeletal knowledge

e Solution:
— Use strong underlying limb-based skeletal model

— Enormous literature (not reviewed here!) on human body
tracking, pose recovery, 3D reconstruction of semi-
deformable bodies, etc.



Dilemma

Enormous literature on human body tracking, pose
recovery, 3D reconstruction of semi-deformable

bodies, etc.

But:

— If we knew the 3D structure (which point corresponds to
which limb) we could (maybe) compare to an action model

— But we don’t know the associations or the 3D structure

Solution:

— Estimate consistency between a single camera model and
an action model with implicit 3D reconstruction




Examples (very small sample)

A. Datta. Closed-Form Analysis of Human Motion in Monocular Videos.
Ph.D. Dissertation. CMU/RI. 2010

e V. Parameswaran and R. Chellappa. View independent human body pose
estimation from a single perspective image. CVPR, 2004.

* X. K. Weiand J. Chai. Modeling 3d human poses from uncalibrated
monocular images. ICCV, 20009.

* R.Rosales and S. Sclaroff. Inferring body pose without tracking body parts.
CVPR, 2000.

* A. Agarwal and B.Triggs. 3d human pose from silhouettes by relevance
vector regression. CVPR, 2004.

* Ahmed Elgammal and Chan-Su Lee. Inferring 3d body pose from
silhouettes using activity manifold learning. CVPR, 2004.

Next few slides from Ankur Datta
and Yaser Sheikh
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Example: Micro-action recognition

Problem Formulation

. N M
MNP X}, 24 D im1 ijl Zij Ztem Xti — PT?inHZ

subject to z;; € {0,1} and 25{1 2 = 1

X: 2D trajectory

X: 3D point (homogeneous coordinates)

T: rigid transformation of a limb

P: affine camera

M: number of limbs

N: number of trajectories Slide adapted from Ankur Datta

Z: binary association variables of trajectory to limb chandraker, 2008



Micro-Action: Gaussian Man

3D Models constructed from motion-capture data

Assumption:
* Points on the same limb move rigidly and are
distributed according to a Gaussian.



Approach

* |If we knew
— Which feature correspond to which limb
— The 3D position X of the features

e Then we could estimate the camera P

* There exist a P only if the motion is consistent
with the transformation model of action a
Xii — PT;“-X%-H2

: N M
Minp X, zi; 2 i1 Zj:l 2% Ztem J

subject to z;; € {0,1} and Zj‘il zi; = 1




Micro-Action: Camera and Action

Leveraging Gaussian Man

Treat X as a nuisance
parafrpeter

min Y 3 [ pX4li() [x0k — PTEX|? dX
P k=1tel)y
where,
p(Xk|i(k)) = N (Xk; (k) 25(k))

K: number of sample trajectories Slide adapted from Ankur Datta
j(k) : limb association for the k' trajectory



Micro-Action: Camera and Action

| everaging Gaussian Man

manZtr{Pth(k A ?j(k))TP QPth(k)}Lj(k)th}
k=1t

where, - .
k) T Bik)Hir)  Hitk)

T
B (k) 1

Ajk) =

Linear system that can be solved efficiently.

Slide adapted from Ankur Datta



Action Recognition Algorithm

RANSAC-based Optimization

For all actions:

For all samples:
Sample K trajectories and their limb

associations
Solve for camera parameters

Compute consensus error

end For
end For

OUTPUT:
Action and Camera with the least consensus error

Slide adapted from Ankur Datta




Weizmann Dataset
10 Actions, 9 actors per action

Note: Really boring but easy to verify output

Sk KPR nii 1
B ! : 1) { “‘.'“.'..-".Li _"‘ N
iIde adapted from Ankur Datta




Micro-Action Alignment Results




Micro-Action Alignment Results

Slide adapted from Ankur Datta



Micro-Action Alignment Results:
Challenges

Stylized differences in exhibition of micro-action



Camera Recovery
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Slide adapted from Ankur Datta
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Discussion

Simple and fast
Robustness to background features?

Depends on strong models (e.g., from motion
capture)

Rigid definition of action; generalization to
broad classes questionable?



Outline

Quick overview of two standards approaches
— Statistical BoF approaches
— Volumetric approaches
Incorporating temporal information more explicitly
— Example: Trajectory fragments
Incorporating spatial information more explicitly
— Example: Encoding pairwise relations
Designing stronger structural models
— Example: “Micro-actions” recognition through implicit 3D reconstruction
Issues with video training datasets
— Example: Selecting temporal boundaries
— Analysis of bias in standard datasets

Discussion and introduction to proposed challenge problems for afternoon
presentations
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We never talk
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for all this. Any
issues there?




Automatic refinement from imperfect
training samples

cARleBl= AL A Al Al |
2 ; il V4 ' | d ' r,~ | 'Y\'

* Problem: Temporal boundaries of actions are ill-defined

« System relies on templates (video clips) selected by user

* Video section selected by user is not optimized for good
detection performance

« Same Issue with automatic selection of training samples
based on caption or text annotations

« Solution: Is it possible to adjust the temporal boundaries
In order to maximize classification performance




Example: The action is very short
compared to the selected clip

mmmmmmm: —a]i=4]
Frame \ Frame 94
@ cropped training video

Frame 31 Frame 42

« Many actions occur quickly, taking only a few frames to
complete

* The “Stand up” action above takes less than a second

 Issue: automatically cropped the instant the action
occurs from the other frames of the video



Example: The selected clip include
multiple actions

. f.(
B ‘ P
\ Framc 127
¢ cropped training video
Frame 45 Frame 53

; 3 : T o
: »! . 'ﬂ
Framc | = . \ Frame 171
auﬂ%mm
A ", ~ .32 cropped training video

Frame 53 Frame 94

4 “37)/"

* Two videos of the action “running” for which cropping
was shown to improve the system performance

* Note the discriminative and unambiguous portions of
each video which were selected



Example: The selected clip is much too
long

-—" Frame 206

Frame | Frame 192 | 4= cropped training video

\ Frame 164
k‘ | n. T u - - - i
k L ¢ cropped training vidco

Frame 1 Frame |8

. “Hugging” video for which almost the entire video was selected,
indicating the initial cropping was adequate

. “Opening door” video for which only the first few frames were
necessary to sufficiently model the action



Sample approaches

Multiple instance learning: Buehler, P., Zisserman, A.,
Everingham, M.: Learning sign language by watching TV (using
weakly aligned subtitles). In: CVPR. (2009)

No constraints on temporal connectivity: Nowozin, S., Bakir,
G., Tsuda, K.: Discriminative subsequence mining for action
classification. In: CVPR. (2007)

Specific to STIP: Yuan, J., Liu, Z., Wu, Y.: Discriminative
subvolume search for efficient action detection. In: CVPR.
(2009)

Optimizes croppings with respect to human performance:
Duchenne, O., Laptey, I,, Sivic, J., Bach, F., Ponce, J.: Automatic
annotation of human actions in video. In: ICCV. (2009)

Attempts to find most discriminative croppings (Examples in
this presentation): Satkin, S. and Hebert, M.: Modeling the
Temporal Extent of Actions. In: ECCV. (2010)



Example
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° Temporally localize a video segment in eacn LI LULILalninig Lie autiull
* Treated as semi-supervised clustering

Duchenne, O., Laptey, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of human
actions in video. In: ICCV. (2009)



Example

Duchenne, O., Laptey, |., Sivic, J., Bach, F., Ponce, J.: Automatic
annotation of human actions in video. In: ICCV. (2009)



Possible overall approach

T
argmax Z classity (trﬂ.in( F(1...n) i ff. f}-_l). fi) — C;
(Va:(fP.fH} =1

* Find the set of croppings (f%, f1.) that
maximizes leave-one-out cross-validation
performance

[Satkin & Hebert, Modeling the Temporal Extent of Actions, ECCV2010]



Possible overall approach

T
argmax Z classify (Tl‘zl-ill(fil___ﬂ)?_ii. ff'. f_il). ﬂ) = (C;
Va:(f2.fH Y=
Intractable because of the exponential number of
possible croppings.

Observation:

* Portions of videos which are most confidently and
correctly classified by a trained action recognition
system are highly correlated with actions of the same
class and differ from actions of other classes.

* These portions of the videos are discriminative and
are a good choice for training our classifier.



Possible overall approach

Tl
argmax Z classify (train(F. =i, fis fi)s Fi) = Ci
{*.\:,-'E_ (f;lr:j ftl)} 1=1

Intractable because of the exponential number of
possible croppings. Approximation:

1. Split the video we aim to crop into its [f|4/2
possible temporal croppings.

2. Train a classifier on the remaining training
videos, excluding the one from step 1.

3. Evaluate this classifier on each of the |[f|4/2
croppings.

4. Select the individual cropping that was correctly
classified with the highest level of confidence.



Experiment

Find most discriminative croppings for a simple action dataset

From Satkin & Hebert, ECCV2010]



Experiment

Select the

Generate all possible =2 Compare each =2 templates with
template against a hjghest

cropped clips from an initial
user-selected example

set of test videos

performance
(detection rate
and localization)



Experiment
100 T ‘/X V\

96

Accuracy (percentage)

. ] PRI

90

Time

cropping of training

|”

Hypothesis: Using “optima
samples boosts accuracy

Proof-of-concept: Brute force search through

possible croppings by using volumetric matching
From Satkin & Hebert, ECCV2010]



Proof-of-concept

Worst Cropping  Best Cropping

Action Accuracy Accuracy
Bend 90.63 98.00
Jumping Jack 90.94 97.70
Run 93.39 96.47
Walk 93.55 95.70
10-class Average 91.98 95.76

* Hypothesis verified: Substantial performance
gain when selecting the best cropping

From Satkin & Hebert, ECCV2010]



More practical approach

- n
. 1 > |
argmin 5w “+C E AR
{Vi:(f).f])}w.bg i—1

fi
subject to: Vi oy (W o, (Z H;( f)) + b) >1-=¢;
f=17

* Tractable approach:
— Train on all uncropped videos excluding one

— Test resulting model on all |f|?/2 possible
cropping of that video

— Select the best cropping for that video

From Satkin & Hebert, ECCV2010]



Examp |€S  From satkin & Hebert, Ecov2010]

Hollywood

7/l

Baseline Accuracy Our Accuracy‘ Absolute Change % Improvement
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 37.834 41.85 4.01 10.60
HOG 33.08 33.71 0.63 1.90
HOF 38.47 43.48 5.01 13.02

Rochester
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Baseline Accura{:y- Our A_ccuracy Absolute Change
(using full videos) (cropped videos) cropped - full (cropped - full)/full

Trajectons 46.00 54.00 8.00 17.39
HOG 54.67 60.00 5.33 9.75
HOF 79.33 80.00 0.67 0.84




Lessons?

Temporal boundaries are not well defined (unlike
boundaries of physical object)

May be possible to define “optimal” temporal
boundaries (croppings) based on discriminability
But: intractable

What is the “right” approximation to the problem
Current approximation seems very coarse

Any other ideas?



Outline

Quick overview of two standards approaches
— Statistical BoF approaches
— Volumetric approaches
Incorporating temporal information more explicitly
— Example: Trajectory fragments
Incorporating spatial information more explicitly
— Example: Encoding pairwise relations
Designing stronger structural models
— Example: “Micro-actions” recognition through implicit 3D reconstruction
Issues with video training datasets
— Example: Selecting temporal boundaries
— Analysis of bias in standard datasets

Discussion and introduction to proposed challenge problems for afternoon
presentations



